
Approximate Stability Margin Analysis of 
Hybrid Direct-Indirect Adaptive Control 

Motivation 
Despite 5 decades of research, adaptive control still cannot gain acceptance in 
safety-critical control systems. Challenges include: 
•   Complex nonlinear behaviors vs. well-understood linear systems 
•   Lyapunov theory cannot predict boundedness in presence of unmodeled dynamics  
•   Metrics for stability and performance not yet available 
•   No guidance on adaptive gain selection for trade-off between performance and robustness 

Certification of adaptive control is a major V&V hurdle to overcome 

Technical Approach 
•   Hybrid (composite) direct-indirect adaptive control provides a flexible framework  

–  Indirect adaptation via recursive least-squares (RLS) parameter estimation  
–  Direct adaptation with lower adaptive gain to improve robustness 

•   Bounded linear stability method provides piecewise approximate LTI margin 
 analysis in a moving time window via the use of Comparison Lemma  

–  Use approximate transfer function to estimate local stability margin for a moving time window 

Simulation 

Conclusion 
•   Hybrid adaptive control can enhance adaptation by reducing both modeling and 

 tracking errors at the same time 
•   Bounded linear stability analysis can provide practical conservative estimates of 

 stability margin  
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Adaptive Control with Adaptive Pilot Element: 
Stability and Performance Implications 

Motivation 
Different adaptive control approaches on different platforms exhibited unpredicted 
interactions with pilot-in-the-loop (IFCS F-15, Navy F/A-18C)  
Adaptive controller will have full control authority 
These combined factors have significant implications for closed loop system stability 
and performance as well as present potentially significant V&V challenge.    

Technical Approach (Trujillo, Morelli, Gregory) 

Mathematically define the pilot as an adaptive controller 

For system stability and performance analysis, model the pilot as an adaptive 
controller; therefore, analyze a system consisting of two adaptive controllers of 
potentially different architectures.  In addition, this analysis will provide:  
-  Design requirements on adaptive controller to compliment pilot’s actions 
-  Predicted analytical bounds on pilot-in-the-loop task specific performance 

Framework for analyzing interaction between two adaptive elements will facilitate 
identification of problematic adaptive controller/adaptive pilot model interactions  
explore these problematic interactions in detail in a simulation and/or flight test (akin to 
worst case uncertainty in linear robustness analysis guiding detailed Monte Carlo) 

Current Work in Progress  
• Use system identification techniques to build a pilot model that changes as system 

dynamics change  initial model of a pilot as an adaptive element 
• Pilot in the loop with an L1 adaptive controller on the GTM in the simulation and 

flight test.  (scheduled for Dec. 2008)  
-  Analytically calculate stability robustness margins of an L1 adaptive controller and compare to 

those obtained from flight data 
• Adaptive pilot model from system identification will fly the maneuvers from GTM 

flight test in batch simulation  
-  Compare adaptive pilot model performance to research pilot performance from flight data 

Implications 
• Analytically evaluate stability and performance of a closed-loop system with an 

adaptive controller while explicitly incorporating the pilot. 
• Provide a framework for analytical analysis of interaction of two adaptive elements 

in a closed-loop system with changing dynamics  identify and characterize 
interactions leading to potentially conflicting actions (e.g. flight and structural mode 
control systems or flight and propulsion control systems) 

• Contribute to functional allocation between pilot and adaptive control schemes as 
well as pilot’s situational awareness of system’s capabilities 
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Direct Adaptive Control With Unknown 
Actuator Failures 

Objective 
New direct adaptive control methods are being developed for systems with 
unknown actuator failures 
•   Theoretically guaranteed stability and tracking performance 

Technical Challenges 
•   Mathematical modeling, formulation, and analytical framework development 
•   Accommodation of actuator failures, disturbances, model uncertainties, actuator saturation 

Technical Approach 
Direct model reference adaptive control (MRAC):  
Formulations with increasing complexity and decreasing assumptions 
•   Actuator failures of unknown magnitude and time of occurrence 
•   State tracking with state feedback 
•   Output tracking with state feedback 
•   Output tracking with output feedback 

Actuator failure models 
•   Loss of effectiveness: 
•   Control surface locked in unknown position: 
•   Failure values kj, ūj, and failure time tj, pattern (which actuators have failed) are  

 unknown  

Solution 
Adaptive control laws for handling actuator failures: 
•   State tracking: 

–  State feedback - low complexity, most assumptions 

•   Output tracking: 
–  State feedback - higher complexity, fewer assumptions 
–  Output feedback - highest complexity, fewest assumptions 

Example Application – GTM (Joshi, Khong) 
•   One of two elevators locks in unknown position at t = 2 sec 
•   Square wave elevator command applied at t = 10 sec 
•   Remaining operational elevator seamlessly takes over for failed elevator 

Conclusions 
•   Direct MRAC can compensate for unknown actuator failures:  

–  Signal boundedness and asymptotic tracking 
–  State or output tracking using state feedback has manageable level of complexity 

•   Continuing research:  
–  Accommodation of multiple failures; disturbances; actuator saturation; unmodeled dynamics; damage; 

nonlinear systems; adaptive propulsion control; application to full GTM math model 
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